

8th International Planetary Probe Workshop 6-10 June 2011, Portsmouth, Virginia

Spacecraft-to-Spacecraft Radio Links

Instrumentation for Planetary Gravity, Atmospheric and Surface Sciences

Sami Asmar

Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA

Motivation

- Traditional Radio Science: links between spacecraft & ground
 - Successful in fields of ring & atmospheric occultations, gravity & interior structure, tests of theories of relativity, solar science, etc.
- Limitations on SNR & geometry
 - Especially for one-way downlink
- New configuration & instrument
- Spacecraft-to-spacecraft links
 - Significant SNR advantage
 - Improved geometrical coverage
 - Eliminate calibration of Earth atmosphere

Classic Results of Radio Occultations

Temperature profiles for the giant planets derived from radio occultation data acquired with the Voyager spacecraft (from Lindal, 1992)

S/C-S/C Science Links to Date

- Galileo Probe to Galileo Orbiter DWE
 - Enhanced by link to Earth
- Huygens DWE
 - Enhanced by link to Earth
- GRACE Earth Gravity
 - Formation Flying
- GRAIL Lunar Gravity
 - Formation Flying
- SELENE Lunar Farside Gravity
 - Four-way Doppler
- Demonstration with Mars Orbiters
 - UHF between ODY & MRO
- Accidental Possible DWE
 - Phoenix EDL, lander to 3 orbiters

Open-Loop Receiver Miniaturization

- DSN Open-Loop Radio Science
 Receiver (RSR) in use for decades
 - Key to proper data acquisition
- RSR Two big to fly
- Breakthrough: Software radios for spacecraft transponders
- Prototype (Electra) onboard MRO used to demonstrate spacecraft-to-spacecraft radio science experiments with the Odyssey spacecraft
- New Horizons RSR for uplink occultation
- GRACE & GRAIL another receiver type for precision gravity measurements

Completed Demo of Mars Orbiters Crosslink

Example of global geometrical coverage

Science

Scenario of two Jovian system orbiters

 Appropriate wavelengths of the radio links drives the front-end down-converters and the required antennas

 Longer wavelength to minimize attenuation from NH₃ but susceptible

Shorter wavelength less noisy

RASSI: Radio Atmospheric Sounding & Surface Scattering Instrument

- Software Radio Receiver based on Electra Payload
- Science quality oscillator, ADC, filters, etc.
- Front-end down-converters (depends on optimum wavelength)
- Advantages of Open-Loop Reception
- Mass & power tradeoffs
- Surface scattering optimum configuration
- Digital design meets Radio Science specifications

Allan Deviation (Phase Stability)

Summary

- Investigations of planetary atmospheres and surfaces via radio occultation and scattering techniques conducted on many planets and satellites via *one-way downlink* from a spacecraft to a ground station
- Limitations on the received SNR or geometrical coverage can be overcome with alternate observation configurations
- *Uplink observations* can have SNR advantage ~3 orders of magnitude
- *Spacecraft-to-spacecraft observations* have significant SNR advantage and can yield improved geometrical coverage
- A special radio science receiver is required onboard the spacecraft
- New digital open-loop receiver designed to meet the Radio Science requirements
- Ready for future missions!

Acknowledgement

The described work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.